The Enchilada: Microfabricated Ion Trap Qubits with Daniel Stick

Download MP3
In this episode of The New Quantum Era, hosts Sebastian Hassinger and Kevin Rowney interview Daniel Stick, a researcher at Sandia National Lab. They discuss the fascinating world of ion traps, a novel approach to quantum computing architecture. Stick explains the concept of suspending atoms inside a radio frequency Paul trap and utilizing laser pulses to manipulate their qubit states. The conversation also delves into the advantages and limitations of ion traps compared to other architectures. Stick shares exciting advancements in their technology, including the enchilada trap, developed as part of the Quantum Systems Accelerator project. Tune in to learn more about the cutting-edge research happening in the field of quantum computing.

[00:07:14] Large scale ion trap. 
[00:10:29] Entangling gates. 
[00:14:14] Major innovations in magneto optical systems. 
[00:17:30] The Name "Enchilada" 
[00:21:16] Combining chains for collective gates. 
[00:27:02] Sympathetic cooling and decoherence. 
[00:30:16] Unique CMOS application. 
[00:33:08] CMOS compatible photonics. 
[00:38:04] More breakthroughs on accuracy. 
[00:41:39] Scaling quantum computing systems. 
[00:45:00] Private industry and technology scaling. 
[00:51:36] Ion trap technology progress. 
[00:54:39] Spreading the word and building community.


  • 00:01:15 - "So these architectures have, I think, powerful advantages versus other architectures."
  • 00:18:30 - "So that was the name."
  • 00:23:34 - "That's correct. That's that is one of the selling points for trapped ion quantum computing is that there is no threshold temperature at which you make the qubit go from behaving really well to behaving, you know, above which things would operate really poorly."
  • 00:35:37 - "That is the grand vision that you've got this chip sitting inside of a chamber, and a bunch of digital signals go in and out of it."
  • 00:38:40 - "What's a few exponents between friends anyway?"
  • 00:41:39 - "That is one of the things that we have to think about is our gates are just, I don't know, 100 times to a thousand times slower than superconducting quantum computing systems or solid state quantum computing systems and ways to get around that have to leverage other kind of other attempts that are not limited by the physical speeds that are possible with an ion trap."
  • 00:48:43 - "Do you have a paperclip, Kevin? That's all you need."

Creators and Guests

Sebastian HassingeršŸŒ»
Host
Sebastian HassingeršŸŒ»
Business development #QuantumComputing @AWScloud Opinions mine, he/him.
Daniel Stick
Guest
Daniel Stick
Dr. Daniel Stick is a Distinguished Member of Technical Staff Sandia National Laboratories and a recognized leader in developing micro-fabricated ion traps for quantum information applications. He received his BS from Caltech and his PhD from the University of Michigan. In 2012 he received a Presidential Early Career Award for Scientists and Engineers for research in trapped ion quantum computing.
The Enchilada: Microfabricated Ion Trap Qubits with Daniel Stick
Broadcast by